I would turn this from a set problem into a graph problem by constructing a graph whose nodes are the graphs with edges connecting sets with an intersection.
Here is some code that does it. It takes a dictionary mapping the name of the set to the set. It returns an array of sets of set names that connect.
def set_supersets (sets_by_label):
element_mappings = {}
for label, this_set in sets_by_label.items():
for elt in this_set:
if elt not in element_mappings:
element_mappings[elt] = set()
element_mappings[elt].add(label)
graph_conn = {}
for elt, sets in element_mappings.items():
for s in sets:
if s not in graph_conn:
graph_conn[s] = set()
for t in sets:
if t != s:
graph_conn[s].add(t)
seen = set()
answer = []
for s, sets in graph_conn.items():
if s not in seen:
todo = [s]
this_group = set()
while 0 < len(todo):
t = todo.pop()
if t not in seen:
this_group.add(t)
seen.add(t)
for u in graph_conn[t]:
todo.append(u)
answer.append(this_group)
return answer
print(set_supersets({
"A": set([1, 2]),
"B": set([1, 3]),
"C": set([4, 5]),
"D": set([3, 6])
}))
CLICK HERE to find out more related problems solutions.