Layer-specific learning rate in Keras Model

You can use tfa.optimizers.MultiOptimizer from the tensorflow_addons package.

See directly from the docs:

import tensorflow as tf
import tensorflow_addons as tfa

model = tf.keras.Sequential([
    tf.keras.Input(shape=(4,)),
    tf.keras.layers.Dense(8),
    tf.keras.layers.Dense(16),
    tf.keras.layers.Dense(32),
])
optimizers = [
    tf.keras.optimizers.Adam(learning_rate=1e-4),
    tf.keras.optimizers.Adam(learning_rate=1e-2)
]
optimizers_and_layers = [(optimizers[0], model.layers[0]), (optimizers[1], model.layers[1:])]
optimizer = tfa.optimizers.MultiOptimizer(optimizers_and_layers)
model.compile(optimizer=optimizer, loss="mse")

Note “Each optimizer will optimize only the weights associated with its paired layer.”

CLICK HERE to find out more related problems solutions.

Leave a Comment

Your email address will not be published.

Scroll to Top