Here is one approach. I added date to original data, and changed the time offset from 0 to 1, to verify that all adjustments get applied.
import pandas as pd
df = {'emp': [123, 234],
'state': ['AL', 'CA'],
'start_time': ['2020-11-05 08:00', '2020-11-05 08:00'],
'end_time': ['2020-11-05 17:00', '2020-11-05 17:00'],
}
# create data frame
df = pd.DataFrame(data=df)
# convert data type
df['start_time'] = pd.to_datetime(df['start_time'])
df['end_time'] = pd.to_datetime(df['end_time'])
# original adjustments
start_adjust = {"AL": 1, "CA": 20}
# convert data type
start_adjust = {
key: pd.to_timedelta(value, unit='minute')
for key, value in start_adjust.items()
}
# apply adjustment
df['start_time'] += df.apply(lambda x: start_adjust[x['state']], axis=1)
# results
print(df)
emp state start_time end_time
0 123 AL 2020-11-05 08:01:00 2020-11-05 17:00:00
1 234 CA 2020-11-05 08:20:00 2020-11-05 17:00:00
CLICK HERE to find out more related problems solutions.