Tackling the easier, unweighted, version of the problem can be done with the following steps:
create a pivot table with your current dataframe
p = df.pivot_table( index='bag_number', columns='item', values='quantity', ).fillna(0) # Convert NaN to 0
follow the example in your linked question to compute the Jaccard distance with
scipy
from scipy.spatial.distance import jaccard, pdist, squareform m = 1 - squareform(pdist(p.astype(bool), jaccard)) sim = pd.DataFrame(m, index=p.index, columns=p.index)
Result:
bag_number 1 2 3 4 5
bag_number
1 1.000000 0.000000 0.333333 0.000000 0.500000
2 0.000000 1.000000 0.333333 0.000000 0.000000
3 0.333333 0.333333 1.000000 0.333333 0.666667
4 0.000000 0.000000 0.333333 1.000000 0.500000
5 0.500000 0.000000 0.666667 0.500000 1.000000
The weighted version is only slightly more complicated. The pdist
function only supports a vector that it will apply to all comparisons, so you’ll need to create a custom similarity (or distance) function. According to Wikipedia, the weighted version can be computed as follows:
import numpy as np
def weighted_jaccard_distance(x, y):
arr = np.array([x, y])
return 1 - arr.min(axis=0).sum() / arr.max(axis=0).sum()
Now you can compute the weighted similarity
sim_weighted = pd.DataFrame(
data=1 - squareform(pdist(p, weighted_jaccard_distance)),
index=p.index,
columns=p.index,
)
Result:
bag_number 1 2 3 4 5
bag_number
1 1.00 0.000000 0.250000 0.000000 0.500000
2 0.00 1.000000 0.142857 0.000000 0.000000
3 0.25 0.142857 1.000000 0.111111 0.300000
4 0.00 0.000000 0.111111 1.000000 0.285714
5 0.50 0.000000 0.300000 0.285714 1.000000
CLICK HERE to find out more related problems solutions.