Use to_datetime
with errors='coerce'
for convert non datetimelike to NaN
s, so filter by Series.isna
in boolean indexing
:
df = df[pd.to_datetime(df['Column X'], errors='coerce').isna()]
But sometimes pandas recognise some integers like 2000
for datetimes, so if possible more accurate is specify format of datetimes, e.g. here YYYY-MM-DD
:
df = df[pd.to_datetime(df['Column X'], errors='coerce', format='%Y-%m-%d').isna()]
CLICK HERE to find out more related problems solutions.