Try this:
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Reshape
from tensorflow.keras import Sequential
model = Sequential([
Reshape((128, -1), input_shape=(128, 60, 41, 2)),
Dense(3)
])
inp = tf.random.uniform([10, 128, 60, 41, 2], dtype=tf.float32)
labels = tf.random.uniform([10, 128], 0, 3, dtype=tf.int32)
pred = model(inp)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.fit(inp, labels)
CLICK HERE to find out more related problems solutions.