NumPy + Pandas solution below.
In case of ambiguity (several ff
-strings in a row) leftmost occurance is taken. In case of absence (no ff
-string in a row) NaN
value is used.
import pandas as pd, numpy as np
df = pd.DataFrame({
'user': ['fftest', 'fwadmin', 'fshelpdesk3', 'no', 'ffone'],
'access': ['fwadmin', 'ffuser2', 'fwadmin', 'user', 'fftwo'],
'station': ['fshelpdesk', 'fshelpdesk2', 'ffuser3', 'here', 'three'],
})
sv = df.values.astype(np.str)
ix = np.argwhere(np.char.startswith(sv, 'ff'))[::-1].T
df.loc[ix[0], 'UserID'] = pd.Series(sv[(ix[0], ix[1])]).str[2:].values
print(df)
Output:
user access station UserID
0 fftest fwadmin fshelpdesk test
1 fwadmin ffuser2 fshelpdesk2 user2
2 fshelpdesk3 fwadmin ffuser3 user3
3 no user here NaN
4 ffone fftwo three one
CLICK HERE to find out more related problems solutions.