Python: Keras model returns different results for the same data and same model

The problem was with reading data function tf.keras.preprocessing.image_dataset_from_directory, which has got its shuffle argument set to True.

When I reload the data again and set shuffle=False like this:

>>> val_ds = tf.keras.preprocessing.image_dataset_from_directory(
...     'PetImages',
...     shuffle=False,
...     validation_split=0.2,
...     subset="validation",
...     seed=1337,
...     image_size=image_size,
...     batch_size=batch_size,
... )
>>> for i in range(5):
...     predictions = model.predict(val_ds)
...     predictions_list = [round(pred[0], 3) for pred in predictions]
...     print(predictions_list[:10])

then the result looks as I expected:

[0.998, 0.994, 1.0, 1.0, 0.885, 1.0, 0.998, 1.0, 0.979, 1.0]
[0.998, 0.994, 1.0, 1.0, 0.885, 1.0, 0.998, 1.0, 0.979, 1.0]
[0.998, 0.994, 1.0, 1.0, 0.885, 1.0, 0.998, 1.0, 0.979, 1.0]
[0.998, 0.994, 1.0, 1.0, 0.885, 1.0, 0.998, 1.0, 0.979, 1.0]
[0.998, 0.994, 1.0, 1.0, 0.885, 1.0, 0.998, 1.0, 0.979, 1.0]

CLICK HERE to find out more related problems solutions.

Leave a Comment

Your email address will not be published.

Scroll to Top