Let’s try to identify all the rows that are timestamp and convert them separately:
mask = df['time'].str.contains(' ')
df['time'] = (pd.to_datetime(df.loc[mask,'time'])
.reindex(df.index)
.fillna(pd.to_datetime(df.loc[~mask, 'time'], unit='ms'))
)
Output:
time C1
0 2020-10-18 13:38:43.349 0.046
1 2020-10-18 13:52:34.104 0.099
2 2020-10-16 05:07:39.304 1.000
3 2020-10-16 05:08:54.121 0.007
CLICK HERE to find out more related problems solutions.