Here is one way to solve it, the idea is to create a mesh, calculate the colors with a function then use imshow
to visualize the mesh.
from matplotlib import pyplot as plt
import numpy as np
def create_mesh(slope,center,radius,t_x,t_y,ax,xlim,ylim):
"""
slope: the slope of the linear function
center: the center of the circle
raadius: the radius of the circle
t_x: the number of grids in x direction
t_y: the number of grids in y direction
ax: the canvas
xlim,ylim: the lims of the ax
"""
def cart2pol(x,y):
rho = np.sqrt(x**2 + y**2)
phi = np.arctan2(y,x)
return rho,phi
def linear_func(slope):
# initialize a patch and grids
patch = np.empty((t_x,t_y))
patch[:,:] = np.nan
x = np.linspace(xlim[0],xlim[1],t_x)
y = np.linspace(ylim[0],ylim[1],t_y)
x_grid,y_grid = np.meshgrid(x, y)
# centered grid
xc = np.linspace(xlim[0]-center[0],xlim[1]-center[0],t_x)
yc = np.linspace(ylim[0]-center[1],ylim[1]-center[1],t_y)
xc_grid,yc_grid = np.meshgrid(xc, yc)
rho,phi = cart2pol(xc_grid,yc_grid)
linear_values = slope * rho
# threshold controls the size of the gaussian
circle_mask = (x_grid-center[0])**2 + (y_grid-center[1])**2 < radius
patch[circle_mask] = linear_values[circle_mask]
return patch
# modify the patch
patch = linear_func(slope)
extent = xlim[0],xlim[1],ylim[0],ylim[1]
ax.imshow(patch,alpha=.6,interpolation='bilinear',extent=extent,
cmap=plt.cm.YlGn,vmin=v_min,vmax=v_max)
fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(12,6))
slopes = [40,30]
centroids = [[2,2],[4,3]]
radii = [1,4]
for item in ax:item.set_xlim(0,8);item.set_ylim(0,8)
v_max,v_min = max(slopes),0
create_mesh(slopes[0],centroids[0],radii[0],t_x=300,t_y=300,ax=ax[0],xlim=(0,8),ylim=(0,8))
create_mesh(slopes[1],centroids[1],radii[1],t_x=300,t_y=300,ax=ax[1],xlim=(0,8),ylim=(0,8))
plt.show()
The output of this code is
As you can see, the color gradient of the figure on the left is not as sharp as the figure on the right because of the different slopes ([40,30]
).
Also note that, these two lines of code
v_max,v_min = max(slopes),0
ax.imshow(patch,alpha=.6,interpolation='bilinear',extent=extent,
cmap=plt.cm.YlGn,vmin=v_min,vmax=v_max)
are added in order to let the two subplots share the same colormap.
CLICK HERE to find out more related problems solutions.