the outputs of functions within nested functions in r can be combined

Why do you want to mix all the functions into one? I would suggest to keep them separate and write test.merge to only merge data from 2 outputs.

freq<- function(df, Vars,col.interest){
  col.interest=as.data.frame(col.interest)
  resultat1= df  %>% 
    group_by(across(all_of(Vars))) %>%
    dplyr::summarise(count = n(), frequency.epi = sum(fg), .groups = 'drop')
  res=merge(resultat1,col.interest,all=TRUE)
  res_final=cbind(df[1:2],res)
  return(res_final)
  
}

mis.test = function(D, R, threshold) { 
  D = as.data.frame(D)
  R = as.data.frame(R)
  mismatch.i = function(i) {
    dif = purrr::map2_df(D[-1], R[i,-1], `-`)
    dif[dif<0] = 0
    dif$mismatch=rowSums(dif)
    dif = cbind(ID = D[1],IDr=R[i,1], dif)
    dif = dif[which(dif$mismatch <= threshold),]
    return(list=dif[c(1,2,ncol(dif))])
  }
  
  diff.mat = do.call(rbind, lapply(1:nrow(R), function(x) mismatch.i(x)))
  diff.mat = as.data.frame(diff.mat)
  return(diff.mat)
}

test.merge = function(x, y) {
  merge(x,y,by="IDd")
}
test.merge(mis.test(data_D[,c(1,3:7)],data_R[1,c(1,3:7)],2), 
           freq(data_D,colnames(data_D)[3:7],data_D[3:7]))

#  IDd IDr mismatch BTD A B C D E count frequency.epi
#1   1   1        2   A 0 0 1 1 0     5        0.0086
#2   2   1        2   B 0 0 1 1 0     5        0.0086
#3   3   1        2  AB 0 0 1 1 0     5        0.0086
#4   4   1        2   O 0 0 1 1 0     5        0.0086
#5   5   1        2  AB 0 0 1 1 0     5        0.0086

And here is the fix to your original code.

test.merge=function(D,R,threshold,DF, Vars,col.interest){
  R=as.data.frame(R)
  D=as.data.frame(D)
  DF=as.data.frame(DF)
  col.interest=as.data.frame(col.interest)
 
  freq.epi<- function(DF, Vars,col.interest){
    resultat1= DF  %>% 
      group_by(across(all_of(Vars))) %>%
      dplyr::summarise(count = n(), frequency.epi = sum(fg), .groups = 'drop')
    res=merge(resultat1,col.interest,all=TRUE)
    res_final=cbind(DF[1:2],res)
    return(res_final)
    
  }
  # same as remark1 for the arguments
  mis.test = function(D, R, threshold) { 
    D = as.data.frame(D)
    R = as.data.frame(R)
    mismatch.i = function(i) {
      dif = purrr::map2_df(D[-1], R[i,-1], `-`)
      dif[dif<0] = 0
      dif$mismatch=rowSums(dif)
      dif = cbind(ID = D[1],IDr=R[i,1], dif)
      dif = dif[which(dif$mismatch <= threshold),]
      return(list=dif[c(1,2,ncol(dif))])
    }
    diff.mat = do.call(rbind, lapply(1:nrow(R), function(x) mismatch.i(x)))
    diff.mat = as.data.frame(diff.mat)
    return(diff.mat)
  }
  
  tab=merge(mis.test(D, R, threshold),freq.epi(DF, Vars, col.interest),by="IDd")
  return(tab)
  
}

test.merge(data_D[,c(1,3:7)],data_R[1,c(1,3:7)],2,data_D, colnames(data_D)[3:7],data_D[3:7])

I am sure this could be optimised and written in a better way (as suggested in 1st part) but since I don’t know the bigger picture here I’ll leave this to OP.

CLICK HERE to find out more related problems solutions.

Leave a Comment

Your email address will not be published.

Scroll to Top